15,852 research outputs found

    Temperature dependent refractive index of silicon and germanium

    Get PDF
    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 microns, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than +/-5 x 10^-3 is desired.Comment: 10 pages, 8 figures, to be published in the Proc. of SPIE 6273 (Orlando

    Limiting stable currents in bounded electron and ion streams

    Get PDF
    The classical static analysis of the infinite planar diode has been extended to include the effects of finite transverse beam size. Simple expressions have been found for the increase in maximum stable current density over that of an infinite stream for finite cylindrical and strip streams flowing between plates of infinite diodes. The results are also given in terms of stream perveance. The effect of a nonuniform distribution of current across the stream is shown to be relatively small. Experimental values of maximum stable current agree with those obtained from the analysis. A further extension of the static analysis has been made to include the effects of additional conducting plane boundaries parallel to the stream motion. For length-to-width ratios L/D less than 0.25 the tube is adequately described by the results for the infinite planar diode and for L/D greater than 4, the infinitely-long drift tube theory suffices. At intermediate values of L/D, the maximum amount of current that can be stably passed through the tube is greater than that predicted by either asymptotic theory

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    Bulk-driven non-equilibrium phase transitions in a mesoscopic ring

    Get PDF
    We study a periodic one-dimensional exclusion process composed of a driven and a diffusive part. In a mesoscopic limit where both dynamics compete we identify bulk-driven phase transitions. We employ mean-field theory complemented by Monte-Carlo simulations to characterize the emerging non-equilibrium steady states. Monte-Carlo simulations reveal interesting correlation effects that we explain phenomenologically.Comment: 4 pages, 3 figure

    Fluorescence Correlation Spectroscopy analysis of segmental dynamics in Actin filaments

    Full text link
    We adapt Fluorescence Correlation spectroscopy (FCS) formalism to the studies of the dynamics of semi-flexible polymers and derive expressions relating FCS correlation function to the longitudinal and transverse mean square displacements of polymer segments. We use the derived expressions to measure the dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions and homogeneously labeled filaments. Both approaches give consistent results and allow to measure the temporal dependence of the segmental mean-square displacement (MSD) over almost five decades in time, from ~0.04ms to 2s. These noninvasive measurements allow for a detailed quantitative comparison of the experimental data to the current theories of semi-flexible polymer dynamics. Good quantitative agreement is found between the experimental results and theories explicitly accounting for the hydrodynamic interactions between polymer segments

    Stiff Polymers, Foams and Fiber Networks

    Get PDF
    We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that in contrast to cellular foam-like structures affine strain fields are generically unstable. Instead, a subtle interplay between the architecture of the network and the elastic properties of its building blocks leads to intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive numerical studies based on a finite element method complemented by scaling arguments.Comment: 4 pages, 5 figure

    Safety, tolerability and pharmacokinetics of intravaginal pentamycin

    Get PDF
    BACKGROUND/AIMS: Intravaginal pentamycin is a polyene macrolide with a broad spectrum of antimicrobial activity and is effective in various forms of infectious vaginitis. We evaluated the safety, tolerability and pharmacokinetics of escalating doses of this product. METHODS: Nineteen healthy volunteers were randomized to receive double blind one of five doses of intravaginal pentamycin (3, 10, 30, 60 or 100 mg) or the corresponding dose of pentamycin vehicle daily for 6 days. Patients with symptomatic vaginitis received a single dose of 60 (n = 6) or 100 mg (n = 6) of intravaginal pentamycin. Safety and tolerability parameters were monitored throughout the study. Plasma concentrations of pentamycin were measured daily in the healthy volunteers and on the day of drug application in the patients. RESULTS: The most frequently reported adverse events were mild or moderate vaginal discharge and mild symptoms of vaginal irritation (mainly pruritus or burning sensation), which also occurred in women who applied the vehicle. No patient with symptomatic vaginitis reported treatment-related adverse events. The plasma levels of pentamycin were below the quantification limit in all samples. CONCLUSION: Intravaginal pentamycin does not cause adverse reactions compared with vehicle and is not absorbed through the intact or the inflamed vagina

    Escalation of error catastrophe for enzymatic self-replicators

    Get PDF
    It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.Comment: 6 pages, 4 figures; accepted at Europhys. Let
    • …
    corecore